

<u>Year 10</u>

	October	December	March Assessment	June Assessment	Age-Related
	Assessment	Assessment			Expectation
	1. Particulate	3. Atoms, Elements	4. Stoichiometry	7. Chemical	AO1 Knowledge
CHEMISTRY	Nature of Matter	and Compounds		Reaction	and
IGCSE	State the distinguishing	3.1 Atomic structure	4.1 Stoichiometry	7.1 Physical and	Understanding
O620	properties of solids, liquids and gases	and the Periodic Table	Use the symbols of the	chemical changes	Candidates should be
(Core and Supplement)	Describe the structure of solids, liquids and	State the relative charges and approximate relative masses of	elements and write the formulae of simple compounds	Identify physical and chemical changes, and understand the	able to demonstrate knowledge and understanding of:
(All objectives outlined are subject to	gases in terms of particle separation, arrangement and types of motion	protons, neutrons and electrons Define proton number	Deduce the formula of a simple compound from the relative numbers of atoms present	differences between them 7.2 Rate (speed) of	 scientific phenomena, facts, laws, definitions, concepts and theories
amendment, in line with the needs of the learners.)	Describe changes of state in terms of melting, boiling, evaporation, freezing, condensation and sublimation	(atomic number) as the number of protons in the nucleus of an atom Define nucleon number (mass number) as the total number of protons	Deduce the formula of a simple compound from a model or a diagrammatic representation	reaction Describe and explain the effect of concentration, particle size, catalysts (including enzymes) and temperature on the rate	 2. scientific vocabulary, terminology and conventions (including symbols, quantities and units) 3. scientific instruments
	Explain changes of state in terms of the kinetic theory Describe qualitatively the pressure and	and neutrons in the nucleus of an atom Use proton number and the simple structure of atoms to explain the basis of the Periodic	Construct word equations and simple balanced chemical equations Define relative atomic mass, Ar , as the average mass of naturally	of reactions Describe the application of the above factors to the danger of explosive combustion with fine powders (e.g. flour mills)	 and apparatus, including techniques of operation and aspects of safety 4. scientific and technological applications with their

temperature of a gas in	Table (see topic 9), with	occurring atoms of an	and gases (e.g. methane	social, economic and
terms of the motion of	special reference to the	element on a scale	in mines)	environmental
its particles	elements of proton	where the 12C atom has		implications.
	number 1 to 20	a mass of exactly 12 units	Demonstrate knowledge	
Show an understanding			and understanding of a	
of the random motion	Define isotopes as atoms	Define relative molecular	practical method for	AO2 Handling
of particles in a	of the same element	mass, Mr, as the sum of	investigating the rate of a	Information and
suspension (sometimes	which have the same	the relative atomic	reaction involving gas	
known as Brownian	proton number but a	masses (Relative formula	evolution	Problem Solving.
motion) as evidence for	different nucleon	mass or Mr will be used		
the kinetic particle	number	for ionic compounds.)	Interpret data obtained	Candidates should be
(atoms, molecules or			from experiments	able, in words or using
ions) model of matter	State the two types of	Determine the formula of	concerned with rate of	other written forms of
	isotopes as being	an ionic compound from	reaction	presentation (i.e.
Describe and explain	radioactive and non-	the charges on the ions		symbolic, graphical and
Brownian motion in	radioactive	present	Try to use the term rate	numerical), to:
terms of random			rather than speed.	
molecular	State one medical and	Construct equations with		1. locate, select,
bombardment	one industrial use of	state symbols, including	Devise and evaluate a	organise and present
	radioactive isotopes	ionic equations	suitable method for	information from a
State evidence for			investigating the effect of	variety of sources
Brownian motion	Understand that	Deduce the balanced	a given variable on the	
	isotopes have the same	equation for a chemical	rate of a reaction	2. translate information
Describe and explain	properties because they	reaction, given relevant		from one form to
dependence of rate of	have the same number	information	Describe and explain the	another
diffusion on molecular	of electrons in their		effects of temperature	
mass	outer shell	4.2 The mole concept	and concentration in	3. manipulate numerical
			terms of collisions	and other data
2. Experimental	Describe the build-up of	Define the mole and the	between reacting	
Techniques	electrons in 'shells' and	Avogadro constant	particles, e.g. an increase	4. use information to
. conniques	understand the		in temperature causes an	identify patterns, report
2.1 Massuramont	significance of the noble	Use the molar gas	increase in collision rate	trends and draw
	gas electronic structures	volume, taken as 24 dm3	and more of the colliding	inferences

	and of the outer shell	at room temperature	molecules have sufficient	
Name appropriate	electrons	and pressure	energy (activation	5. present reasoned
apparatus for the	3.2.1 Bonding: the		energy) to react whereas	explanations for
measurement of time,	structure of matter	Calculate stoichiometric	an increase in	phenomena, patterns
temperature, mass and		reacting masses,	concentration only	and relationships
volume, including	Describe the differences	volumes of gases and	causes an increase in	
burettes, pipettes and	between elements,	solutions, and	collision rate	6. make predictions and
measuring cylinders	mixtures and	concentrations of		hypotheses
	compounds, and	solutions expressed in g /	Describe and explain the	7. solve problems,
2.2.1 Criteria of	between metals and non-	dm3 and mol / dm3	role of light in	including some of a
purity	metals	Calculations involving the	photochemical reactions	quantitative nature.
		idea of limiting reactants	and the effect of light on	
Demonstrate	Describe an alloy, such		the rate of these	AO3 Experimental
knowledge and	as brass, as a mixture of	Calculate empirical	reactions	Skills and
understanding of paper	a metal with other	formulae and molecular		Investigation
chromatography	elements	formulae	Describe the use of silver	investigation
			salts in photography as a	
Interpret simple	3.2.2 lons and ionic	Calculate percentage	process of reduction of	Candidates should be
chromatograms	bonds	yield and percentage	silver ions to silver; and	able to:
		purity	photosynthesis as the	
Identify substances and	Describe the formation		reaction between carbon	1. demonstrate
assess their purity from	of ions by electron loss	5. Electricity and	dioxide and water in the	knowledge of how to
melting point and	, or gain	Chemistry	presence of chlorophyll	safely use techniques,
boiling point	C	-	and sunlight (energy) to	apparatus and materials
information	Describe the formation	Define electrolysis as the	produce glucose and	(including following a
	of ionic bonds between	breakdown of an ionic	oxygen	sequence of instructions
Understand the	elements from Groups I	compound, molten or in		where appropriate)
importance of purity in	and VII	aqueous solution, by the	7.3 Reversible	
substances in everyday		passage of electricity	reactions	2. plan experiments and
life, e.g. foodstuffs and	Describe the formation			investigations
drugs	of ionic bonds between	Describe the electrode	Understand that some	
		products and the	chemical reactions can	3. make and record
			be reversed by changing	observations,

Interpret simple	metallic and nonmetallic	observations made	the reaction conditions	measurements and
chromatograms,	elements	during the electrolysis of:	(For example, the effects	estimates
including the use of Rf		 molten lead(II) 	of heat and water on	
values	Describe the lattice	bromide	hydrated and anhydrous	4. interpret and evaluate
	structure of ionic	 concentrated 	copper(II) sulfate and	experimental
Outline how	compounds as a regular	hydrochloric acid	cobalt(II) chloride.)	observations and data
chromatography	arrangement of	 concentrated aqueous 		
techniques can be	alternating positive and	sodium chloride	Predict the effect of	5. evaluate methods and
applied to colourless	negative ions	 dilute sulfuric acid 	changing the conditions	suggest possible
substances by exposing		between inert electrodes	(concentration,	improvements.
chromatograms to	3.2.3 Molecules and	(platinum or carbon)	temperature and	
substances called	covalent bonds		pressure) on other	
locating agents		State the general	reversible reactions	
(Knowledge of specific	Describe the formation	principle that metals or		
locating agents is not	of single covalent bonds	hydrogen are formed at	Demonstrate knowledge	
required.)	in H2, Cl2, H2O, CH4,	the negative electrode	and understanding of the	
	NH3 and HCl as the	(cathode), and that non-	concept of equilibrium	
2.2.2 Methods of	sharing of pairs of	metals (other than		
purification	electrons leading to the	hydrogen) are formed at	7.4 Redox	
•	noble gas configuration	the positive electrode		
Describe and explain	0 0	(anode)	Define oxidation and	
methods of purification	Describe the differences		reduction in terms of	
by the use of a suitable	in volatility, solubility	Predict the products of	oxygen loss/gain.	
solvent, filtration,	and electrical	the electrolysis of a		
crystallisation and	conductivity between	specified binary	Oxidation state in terms	
distillation (including	ionic and covalent	compound in the molten	of its use to name ions,	
use of fractionating	compounds	state	e.g. iron(II), iron(III),	
column).(See fractional			copper(II) <i>,</i>	
distillation of	Describe the electron	Describe the	manganate(VII).)	
petroleum in sub-topic	arrangement in more	electroplating of metals		
14.2 and products of	complex covalent		Define redox in terms of	
		Relate the products of	electron transfer Identify	
		electrolysis to the	redox reactions by	

•				1
fermentation in sub-	molecules such as N2,	electrolyte and	changes in oxidation	
topic 14.6.)	C2H4, CH3OH and CO2	electrodes used,	state and by the colour	
		exemplified by the	changes involved when	
Suggest suitable	Explain the differences in	specific examples in the	using acidified potassium	
purification techniques,	melting point and boiling	Core together with	manganate(VII), and	
given information	point of ionic and	aqueous copper(II)	potassium iodide.	
about the substances	covalent compounds in	sulphate using carbon		
involved	terms of attractive forces	electrodes and using	Define oxidising agent as	
		copper electrodes (as	a substance which	
		used in the refining of	oxidises another	
		copper)	substance during a redox	
	3 2 4 Macromolecules		reaction.	
	Describe the giant	Describe electrolysis in		
	covalent structures of	terms of the ions present	Define reducing agent as	
	graphite and diamond	and reactions at the	a substance which	
	graphice and diamond	electrodes in the	reduces another	
	Relate their structures to	examples given	substance during a redox	
	their uses e.g. graphite		reaction.	
	as a lubricant and a	Predict the products of		
	conductor, and diamond	electrolysis of a specified	Identify oxidising agents	
	in cutting tools	halide in dilute or	and reducing agents from	
		concentrated aqueous	simple equations	
	Describe the	solution		
	macromolecular		8. Acids. Bases and	
	structure of silicon(IV)	Construct ionic half-	Salts	
	oxide (silicon dioxide)	equations for reactions	Saits	
		at the cathode		
	Describe the similarity in		8.1 The characteristic	
	properties between	Outline the uses of	properties of acids and	
	diamond and silicon(IV)	electroplating	bases	
	oxide, related to their			
	structures	Describe the reasons for	Describe the	
		the use of copper and	characteristic properties	

		(steel-cored) aluminium	of acids as reactions with	
	3.2.5 Metallic bonding	in cables, and why	metals, bases,	
		plastics and ceramics are	carbonates and effect on	
	Describe metallic	used as insulators	litmus and methyl orange	
	bonding as a lattice of			
	positive ions in a 'sea of	Describe the transfer of	Describe the	
	electrons' and use this to	charge during	characteristic properties	
	describe the electrical	electrolysis to include:	of bases as reactions with	
	conductivity and	 the movement of 	acids and with	
	malleability of metals	electrons in the metallic	ammonium salts and	
		conductor	effect on litmus and	
		• the removal or addition	methyl orange	
		of electrons from the		
		external circuit at the	Describe neutrality and	
		electrodes	relative acidity and	
		• the movement of ions	arkaining in terms of pr	
		In the electrolyte	Indicator paper (whole	
		Describe the production	numbers only)	
		of electrical energy from	numbers only)	
		simple cells i e two	Describe and explain the	
		electrodes in an	importance of controlling	
		electrolyte (This is linked	acidity in soil	
		with the reactivity series		
		in sub-topic 10.2 and	Define acids and bases in	
		redox in sub-topic 7.4.)	terms of proton transfer,	
			limited to aqueous	
		Describe, in outline, the	solutions	
		manufacture of:		
		 aluminium from pure 	Describe the meaning of	
		aluminium oxide in	weak and strong acids	
		molten cryolite (see sub-	and bases	
		topic 10.3)		

	 chlorine, hydrogen and 	8.2 Types of oxides	
	sodium hydroxide from		
	concentrated aqueous	Classify oxides as either	
	sodium chloride (You	acidic or basic, related to	
	should give starting	metallic and nonmetallic	
	materials and essential	character	
	conditions but you do		
	not need to give the	Classify more oxides as	
	technical details or	neutral or amphoteric	
	diagrams.)		
		8.3 Preparation of	
	6. Chemical	salts	
	Energetics		
	0	Demonstrate knowledge	
	6.1 Energetics of a	and understanding of	
	6.1 Energetics of a	preparation, separation	
	reaction	and purification of salts	
		as examples of some of	
	Describe the meaning of	the techniques specified	
	exothermic and	in sub-topic 2.2.2 and the	
	endothermic reactions	reactions specified in	
		sub-topic 8.1.	
	Interpret energy level		
	alagrams snowing	Demonstrate knowledge	
	exothermic and	and understanding of the	
	endothermic reactions	preparation of insoluble	
	Describe bond breaking	salts by precipitation	
	as an endothermic		
	as an endothermic	Suggest a method of	
	forming as an	making a given salt from	
	ovothormic procoss	a suitable starting	
	exomernic process		

	Draw and label energy	material, given	
	level diagrams for	appropriate information	
	exothermic and		
	endothermic reactions	8.4 Identification of	
	using data provided	ions and gases	
		0	
	Calculate the energy of a	Describe the following	
	reaction using bond	tests to identify:	
	energies		
	-	aqueous cations:	
	6.2 Energy transfer	aluminium, ammonium.	
	07	calcium, chromium(III).	
	Describe the release of	copper(II), iron(II),	
	heat energy by burning	iron(III) and zinc (using	
	fuels	aqueous sodium	
		hydroxide and aqueous	
	State the use of hydrogen	ammonia as appropriate)	
	as a fuel	(Formulae of complex	
		ions are not required.)	
	Describe radioactive	, ,	
	isotopes, such as 235U,	cations: use of the flame	
	as a source of energy	test to identify lithium,	
	0,	sodium, potassium and	
	Describe the use of	copper(II)	
	hydrogen as a fuel		
	reacting with oxygen to	anions: carbonate (by	
	generate electricity in a	reaction with dilute acid	
	fuel cell	and then limewater),	
	(You do not need details	chloride, bromide and	
	of the construction and	iodide (by reaction under	
	operation of a fuel cell.)	acidic conditions with	
		aqueous silver nitrate),	
		nitrate (by reduction with	

		aluminium), sulfate (by	
		reaction under acidic	
		conditions with aqueous	
		barium ions) and sulfite	
		(by reaction with dilute	
		acids and then	
		aqueouspotassium	
		manganate(VII))	
		gases: ammonia (using	
		damp red litmus paper),	
		carbon dioxide (using	
		limewater), chlorine	
		(using damp litmus	
		paper), hydrogen (using	
		lighted splint), oxygen	
		(using a glowing splint),	
		and sulfur dioxide (using	
		aqueous potassium	
		manganate(VII)	

Assessment for Learning

Formative assessment to take place in daily lessons via class discussion and differentiated questioning to highlight and address specific needs.

Assessment of Learning

- Past Paper Questions
- Weekly Quiz (20 Mins)
- End of Topic Review (Every 6-8 lessons)
- Peer Assessment
- Self-Assessment
- End of half term examination.